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Two numerical techniques are proposed to construct a polynomial chaos (PC) representa-
tion of an arbitrary second-order random vector. In the first approach, a PC representation
is constructed by matching a target joint probability density function (pdf) based on
sequential conditioning (a sequence of conditional probability relations) in conjunction
with the Rosenblatt transformation. In the second approach, the PC representation is
obtained by having recourse to the Rosenblatt transformation and simultaneously match-
ing a set of target marginal pdfs and target Spearman’s rank correlation coefficient (SRCC)
matrix. Both techniques are applied to model an experimental spatio-temporal data set,
exhibiting strong non-stationary and non-Gaussian features. The data consists of a set of
oceanographic temperature records obtained from a shallow-water acoustics transmission
experiment [1]. The measurement data, observed over a finite denumerable subset of the
indexing set of the random process, is treated as a collection of observed samples of a sec-
ond-order random vector that can be treated as a finite-dimensional approximation of the
original random field. A set of properly ordered conditional pdfs, that uniquely character-
izes the target joint pdf, in the first approach and a set of target marginal pdfs and a target
SRCC matrix, in the second approach, are estimated from available experimental data. Dig-
ital realizations sampled from the constructed PC representations based on both schemes
capture the observed statistical characteristics of the experimental data with sufficient
accuracy. The relative advantages and disadvantages of the two proposed techniques are
also highlighted.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Many applications in science and engineering involve modeling spatio-temporal phenomena. Within the confines of the
probabilistic framework, the Gaussian stochastic process has been the most common form for describing these phenomena.
Non-Gaussian models, although clearly more realistic in most instances, have had to contend with the scarcity of consistent
mathematical theories for describing general infinite-dimensional probability measures. Moreover, for most available math-
ematical models, algorithms may not be available for generating samples of the corresponding stochastic processes, that are
consistent with target infinite-dimensional probability measures. In addition to these mathematical challenges, another cru-
cial difficulty often stems from the paucity of data on which available models are to be based. This has limited the scope of
non-Gaussian models to transformations of Gaussian vectors and processes, or to models that are completely characterized
by their lower order statistics. Since Gaussian processes are characterized only by their mean and covariance functions, they
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require a manageable amount of information and thus often provide a rational modeling alternative. These challenges not-
withstanding, it remains a recognized fact that many processes representing physical phenomena rarely satisfy the assump-
tions and constraints associated with a Gaussian process. The current work focuses on the construction of a probability
model of a non-stationary and non-Gaussian random process by using a set of measurement data and the associated simu-
lation technique based on the constructed model. The resulting mathematical model readily lends itself to the generation of
consistent samples of the process.

The most common approach in digitally generating realizations of a non-Gaussian process consists of specifying a set of
target non-Gaussian marginal probability density functions (marpdfs) and a target correlation coefficient (corrcoef) function
or spectral density function (sdf) [2,3]. The set of multidimensional statistics required to characterize these probabilistic
models can be estimated from available data. In synthesizing realizations in this manner, the target stochastic process is as-
sumed to be a nonlinear mapping of some underlying Gaussian process, where the corrcoef function of the Gaussian process
is usually determined through a suitable (analytical or optimization based) root-finding technique. Realizations of this
Gaussian process are then transformed, pointwise, into realizations of the target non-Gaussian random process using the
Nataf transformation yielding a match of the target non-Gaussian marpdfs and the target correlation structure (the Nataf
transformation is essentially a scalar-variate version of the Rosenblatt transformation [4]). This step involves an additional
computational burden of constructing the inverse mappings of the target marginal probability distribution functions (mar-
PDFs) if they are not readily available, which is often the case if these latter have been constructed using some nonparametric
density estimation techniques [5,6]. In addition to computational challenges, it is well known that certain stochastic pro-
cesses, specified through their marginal pdfs and their second-order correlation, cannot be characterized as Nataf transfor-
mation of a Gaussian process [7], thus limiting the applicability of these approaches.

It is clear that the construction of a probability model to describe observational data requires some definition of proximity
between random variables of interest. The most traditional way to define the proximity, as alluded to above, is via the cor-
relation coefficient, also known as Pearson’s correlation coefficient (PCC). In many classical statistical tests, for instance,
hypothesis test (such as to test if the correlation, i.e., PCC, between two random variables is zero), it is required that the ran-
dom variables be normally distributed [8,9]. It can be inferred from the statistical literature that nonparametric correlation
coefficients based on distribution-free approach are likely to be more useful when the assumption of Gaussianity violates. A
number of other notions of distribution-free correlation have been proposed that might be more useful in the present con-
text [8] as they provide alternative measures of statistical dependency, useful in characterizing non-Gaussian random pro-
cesses. These include Spearman’s rank correlation coefficient (SRCC) or Spearman’s q and Kendall’s s. A recent simulation-
based study [10, Section 12.5.2] investigates the admissibility (i.e., positive-definiteness) of the PCC matrix of an underlying
Gaussian random vector when the statistical dependency of the non-Gaussian random vector is characterized by the corre-
lation coefficient matrices based on SRCC and Kendall’s s. It was found that constraining the target non-Gaussian process
through its SRCC, instead of the Kendall’s s, provides a characterization that is more amenable to be described as a nonlinear
(e.g., Nataf) transformation of some underlying Gaussian process. Thus, in addition to describing a more meaningful statis-
tical dependency structure, the SRCC also provides a characterization that is more amenable to digital synthesis and simu-
lation when compared to Kendall’s s. In light of these observations, the SRCC will be considered in the ensuing discussion as
the main correlation structure describing the stochastic processes at hand.

The simulation of non-Gaussian random processes by specifying a set of target non-Gaussian marpdfs and a target SRCC
function has already been considered in the literature. It was found that whenever the underlying Gaussian process exists, no
special search technique is required to determine its feasible PCC function [11] resulting in significant computational sav-
ings. However, efficient algorithms are still required for the computation of the inverse functions of the target marPDFs.
Clearly, simulation techniques, based on a target PCC/SRCC function or sdf and an underlying Gaussian process, are not com-
putationally efficient, particularly, in the case when the target set of marpdfs are estimated by employing nonparametric
techniques. The characterization of non-Gaussian random processes continues to be an active field of research. Many prac-
tically appealing issues concerning the estimation of the underlying family of multivariate joint probability density functions
(mjpdfs) from finite data sets have provided the impetus for much of the innovation in the recent past [5–7,12]. By making
use of such techniques, the problem of non-existence of an underlying Gaussian random process can be mitigated at the ex-
pense of computational efficiency. Advanced simulation algorithms such as Markov chain Monte Carlo (MCMC) sampling are
required to sample from the resulting family of mjpdfs thus placing a further demand on computational resources. This dif-
ficulty could be a major bottleneck particularly in the context of propagating the statistical characteristics of stochastic sys-
tem parameters to model-based predictions if the stochastic system parameters are modeled as non-Gaussian random
processes. A number of studies [13,14] have been carried out to circumvent this particular difficulty by representing the
non-stationary and non-Gaussian random processes through polynomial chaos (PC) expansions [15]. The underlying concept
of these studies is similar to the one introduced earlier in the literature [16], which again assumes the existence of an under-
lying Gaussian process.

The PC formalism, nevertheless, provides a theoretically sound backbone facilitating efficient construction of the proba-
bility model of the non-stationary and non-Gaussian second-order random process possibly representing some model
parameters of a stochastic system [17–20] and systematic propagation of the statistical properties of these stochastic system
parameters to the response of the model in diverse fields of application [15,21–24].

Within the purview of the PC framework, the probability model of the random process refers to a decomposition of the
process itself constructed with respect to (w.r.t.) a set of random variable basis functions. The basis functions constitute a set
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of orthogonal functions w.r.t. a suitably chosen probability measure [15,18,19]. The coordinates (often referred as PC coef-
ficients in the literature) w.r.t. the basis functions are the representative statistics and must be estimated from data. The set
of PC coefficients thus provides a parametrization of the probabilistic description of the stochastic process. Moreover, given
the fact that this is a linear parametrization of the process itself, and not its multidimensional pdf, synthesizing digital real-
izations of the process is an immediate task involves virtually no computational overhead. We also note that the PC based
procedures do not require an assumption of ergodicity, and the resulting PC representations of the stochastic process do no
exhibit this characteristic either.

Recent attempts [25] at constructing PC representations from a given set of data have assumed the dominant Karhunen–
Loève (KL) random variable components of the stochastic process to be statistically independent, and have relied on Bayesian
inference to construct posterior distributions for the PC coefficients. In fact, it is common to assume the uncorrelated (sta-
tistically dependent) KL random variables associated with a non-Gaussian process to be mutually statistically independent.
Due to the central limit theorem, the assumption of statistically independent KL random variables causes a fundamental dif-
ficulty in representing a non-Gaussian process. This is particularly true for a process with wide-banded evolutionary sdf [26]
(for stationary process, it reduces to the usual sdf). Under certain mild condition, the central limit theorem guarantees then
that the KL-based representation of the process tends to produce in distribution a process with Gaussian marpdfs rather than
the original non-Gaussian process.1

Additional efforts [28], that do not assume the existence of an underlying Gaussian process and relax the condition of
statistical independence among the KL components, propose to employ the principle of maximum likelihood. The likelihood
function is, however, approximated by the product of one-dimensional marginal likelihood functions for computational
expediency at the cost of accuracy loss. This approximation is essentially similar to the independence composite likelihood
representation [29]. Further work based on the principle of maximum entropy and the Rosenblatt transformation has re-
cently been proposed to identify the asymptotic mjpdf of the PC coefficients [30]. In that work, no assumption about the
underlying Gaussian process is made, and the statistical dependencies among the dominant KL components are character-
ized by accurately capturing their higher order joint statistical features.

The current work considers the problem of constructing the probability model of a non-stationary and non-Gaussian ran-
dom process directly from the experimental measurements. At the outset, let us set forth a clarification of terminology for the
present work. When the indexing set of the stochastic process is multidimensional, reference is often made to a random field,
and a stationary random process is then referred to as a statistically homogeneous random field. In the present work, and to
emphasize the identical underlying mathematical structure, the term ‘stochastic process’ or ‘random process’ will be ubiq-
uitously used and the equivalence of the concepts of statistical homogeneity and stationarity will be implied. Throughout
this work, the bold face character will be used to indicate that the quantity under consideration is either random or multi-
dimensional. The realizations of a multidimensional random quantity are, however, denoted by the respective normal char-
acters for distinction purpose.

We will assume that a collection of measurement data is observed over a finite subset of the indexing set of the random
process, and consequently, treated as a collection of observed samples of RN-valued random vector Y with RN denoting the
N-dimensional Euclidean space. It should be clear that Y represents a finite-dimensional representation of the original (infi-
nite-dimensional) stochastic process under investigation. Let the set of random variable components of Y be denoted by
fyig

N
i¼1 and the multivariate joint probability distribution function (mjPDF) of Y ¼ y1; . . . ; yN½ �T by Py1 ;...;yN

. Here, T is the trans-
pose operator. The probability measure of the underlying random process is then completely characterized by the family of
mjPDF: fPy1 ;...;yN

g; 8N 2 N ¼ f0;1;2; . . .g. Since N is always finite in an experimental or numerical context, characterizing the
underlying stochastic process has to be performed, in some approximate sense, through a characterization of Y. The prob-
ability measure PY � Py1 ;...;yN

estimated by using the measurement data set satisfies Kolmogorov’s existence theorem [27,
Section 36] implying the existence of a stochastic process compatible with the set fPy1 ;...;yn

g; 8n 2 f1; . . . ;Ng. The value of
N, required to achieve a certain fidelity in the finite-dimensional representation, depends on the characteristics of the sto-
chastic fluctuations of the original stochastic process over its spatio-temporal domain. Then, the constructed stochastic pro-
cess characterized by PY and the underlying original stochastic process are equivalent in the sense that they have N-
dimensional identical mjPDFs.

The current work presents two different computational techniques to estimate the probability model of a finite-dimen-
sional approximation of the underlying non-stationary and non-Gaussian stochastic process that is assumed to be com-
pletely characterized by experimental measurements taken simultaneously over space and time. In the context of the
present work, the term ‘probability model’ refers to ‘PC representation’. The first approach constructs the PC representation
based on a target mjpdf, and the other approach is based on a set of all the target marpdfs and a target SRCC matrix. The
target mjpdf, marpdfs and SRCC matrix correspond, respectively, to the observed joint histogram density, observed marginal
histogram densities and sample SRCC matrix estimated by using the available measurements. No assumption about the exis-
1 It follows from Lindberg–Feller theorem and requires, for every e > 0, that [27, Section 27]

lim
M!1

1

C2
M

XM

i¼1

Z
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in which fzigM
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tence of an underlying Gaussian vector is made for any of the approaches presented here, nonetheless the second approach
can exploit the advantage of existence of such a vector whenever possible.

The paper starts with a discussion of the PC formalism in Section 2, following which the two approaches are presented in
Sections 3.1 and 3.2. Since considerable use of the properties of SRCC is made in the second approach, the definition and rel-
evant features of SRCC are highlighted before presenting the second approach. As an illustration of the two proposed tech-
niques, a set of oceanographic data obtained from a shallow-water acoustics transmission experiment [1] is used to model
the spatio-temporal random temperature field and the results are discussed in Section 4. Finally, conclusions inferred from
the present contribution are presented in Section 5.

The present work also contains two appendices. An interpolation-based scheme to efficiently compute the required PC
coefficients is described in Appendix A. In Appendix B, overall convergence, verification and validation issues are briefly
discussed.
2. Polynomial chaos formalism

It is assumed in the present work that the stochastic processes of interest are second-order, guaranteeing the existence of
mean-squared convergent series representations, including the PC representation, of Y. Current developments in polynomial
chaos methodologies consist of various adaptations of the Cameron–Martin theorem [31] according to which second-order
nonlinear functionals of the Brownian motion, defined on the space, C, of all real-valued continuous functions on a compact
support, are approximated by a Hilbertian decomposition with respect to a set of multidimensional orthogonal Hermite
polynomials. The set of Hermite polynomials is constructed with respect to a finite-dimensional set of statistically indepen-
dent Gaussian random variables, obtained through suitable Hilbertian projections of the Brownian motion. The resulting rep-
resentation is shown [31] to converge in mean-square to the nonlinear functional being approximated as the dimension and
order of the Hermite polynomial tend to infinity. This mean-square error (MSE) is measured with respect to the Wiener mea-
sure [32] on C.

While the Cameron–Martin theorem referred explicitly to the representation of functionals of infinite-dimensional
Brownian motion, some of their recent application, motivated by practical considerations have adapted this result to func-
tionals of Gaussian and non-Gaussian finite-dimensional vectors, using orthogonal projections in suitable measure spaces
[15,17,18,33,19].

Let n � ðn1; . . . ; ndÞ be a Rd-valued random vector with probability measure, Pn, that is absolutely continuous w.r.t. the
Lebesgue measure, dn, on Rd implying that PnðdnÞ ¼ pnðnÞdn, in which dn ¼

Qd
i¼1dni with dni being the Lebesgue measure

on R and pn is the mjpdf of n. The set n plays the role of an underlying source of randomness inducing, through an arbitrary
nonlinear transformation, the randomness in the observed phenomenon. The choice of the probability distribution, Pn, is thus
a modeling decision that should reflect some judgment regarding the essential sources of uncertainty. Based on the chosen
Pn, the PC representation of each component of Y can be expressed as,
yk � yk n
� �
¼
X
a2Nd

ya;k!aðnÞ; k ¼ 1; . . . ;N; ð1Þ
if ykðnÞ is a second-order random variable, i.e., E½jykðnÞj
2� <1with jxj representing the absolute value of x and E½�� represent-

ing the expectation operator with respect to the chosen probability measure, Pn (this second-order condition is satisfied here
since the underlying stochastic process is assumed to be second-order). Here, ya;k; a � ða1; . . . ;adÞ 2 Nd, represent the PC
coefficients (to be determined) with respect to the basis functions, !a; a 2 Nd. If pni

denotes the marpdf of ni induced by
pn, then the basis functions in (1) are given by [19],
!0ðnÞ ¼ 1; if a ¼ 0 2 Nd;

!aðnÞ ¼
Qd

i¼1
pni
ðniÞ

pnðnÞ

� �1=2 Qd
i¼1

Wai
ðniÞ; if a–0;

ð2Þ
in which Wai
are orthogonal polynomials of order ai. The orthogonality of the basis functions Wai

; ai 2 N, also implies [19]
the orthogonality of the set, f!aðnÞ; a 2 Nndg, with respect to Pn. In the case of statistically independent n1; . . . ; nd random
variables, (2) simplifies to,
!aðnÞ ¼
Yd

i¼1

Wai
ðniÞ: ð3Þ� �
The equality, ‘=’, in (1) should be interpreted in the mean-square sense such that E ykðnÞ �
P

a:jaj6no
ya;k!aðnÞ

n o2
! 0 as

no !1, where the expectation operator is w.r.t. Pn [19], jaj ¼
Pd

i¼1ai, and no is the maximum order (i.e., order of the PC rep-
resentation) of all the basic orthogonal polynomials, fWai

; ai 2 N; i 2 ð1; . . . ; dÞg, included in (1). However, for computational
purpose, this infinite series is truncated after a finite number of terms that is typically determined by the available compu-
tational budget and target accuracy (usually in the sense of MSE).
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The accuracy of a truncated approximation and the rate of convergence of the PC representation also depend on the
choice of Pn and consequently, on the resulting set of orthogonal basis functions used in (1). The proper selection of the prob-
ability measure Pn should reflect a physical modeling process through which the significant and sufficient sources of uncer-
tainty are identified. Once this choice for Pn has been made and the mapping, n#ykðnÞ, is constructed, either explicitly or
implicitly, the PC coefficients can be computed using the orthogonality property of !a’s,
ya;k ¼
E ykðnÞ!aðnÞ
h i

E !2
a ðnÞ

h i ; a 2 Nd; k ¼ 1; . . . ;N: ð4Þ
The denominator in (4) can be evaluated by using (2) or (3) as appropriate. When n1; . . . ; nd are statistically independent, then
E½!2

a ðnÞ� reduces to,
E !2
aðnÞ

h i
¼
Yd

i¼1

E W2
ai
ðniÞ

h i
; ð5Þ
in which E½W2
ai
ðniÞ� are readily available [19] for many commonly employed measure, Pni

. The numerator in (4), on the other
hand, is given by,
E ykðnÞ!aðnÞ
h i

¼
Z

Sn

ykðnÞ!aðnÞpnðnÞdn; ð6Þ
in which Sn # Rd is the support of n. Clearly, computation of this integral requires knowledge of the mapping, n#ykðnÞ, which
is not available in the present work because the information, that is assumed to be available here, is only the measurement
data on Y. Two schemes are presented next that define this mapping, enabling the computation of the integral in (6) to
determine the PC coefficients in (4), and subsequently, facilitating construction of the required PC representation in (1).
3. Construction of PC representation from data

In this section, the two approaches for constructing PC representations are presented in detail. Each approach consists of
two major steps. In the first step, a mjPDF is estimated based on available measurements. The estimated mjPDF is referred to
as the target mjPDF. The second step involves developing a PC representation such that the associated mjPDF is within a de-
sired tolerance to the target mjPDF.

The first approach borrows ideas from the literature of pdf estimation [12] and PC coefficient estimation [30]. This ap-
proach, which can be viewed as a supplement to our previous work [30], is based on the Rosenblatt transformation that
makes use of a complete set of properly ordered conditional probability distribution functions (PDFs). The set of conditional
PDFs uniquely defines the target mjPDF. The associated target mjpdf is simply taken as the observed joint normalized his-
togram estimated by using the available measurements.

The second approach, on the other hand, is founded on the properties of SRCC and the Rosenblatt transformation, applied
individually on each marPDF of the involved scalar-variate random variable components. It borrows ideas from the literature
of computer simulation of non-Gaussian random vectors when these are characterized by their marpdfs and SRCC. In this
approach, the target mjPDF is assumed to be completely characterized by a set of marpdfs and a SRCC matrix. The set of tar-
get marpdfs and the target SRCC matrix are, respectively, taken as the observed marginal normalized histogram and the sam-
ple SRCC matrix that are estimated from the available measurements.

Both approaches rely on the Rosenblatt transformation to define a nonlinear mapping f : n! Y such that fðnÞ is equal in
distribution to Y. The function fð�Þ is then approximated by using PC representation constructed w.r.t. the chosen measure of
n. By construction (see details in Sections 3.1 and 3.2) and choice of Pn, the function fð�Þ is absolutely continuous on Sn in
addition to being second-order, EðkfðnÞk2Þ <1, where k � k is the Euclidean norm on RN . This last condition guarantees
the existence of the sought-after PC representation for fðnÞ [19].

3.1. Approach 1: based on conditional PDFs

The unknown mapping, n # Y, in this case is defined by using the Rosenblatt transformation. While any suitable density
estimation technique could be applied to compute the target mjPDF, PY , of Y by using the available measurement data, it is
simply obtained, in the present work, from the normalized ðN þ 1Þ-dimensional histogram of the available N-variate data of
Y. The normalized histogram can be used to determine the corresponding target mjPDF, pY . The histogram is first estimated
over a discrete array of a finite number of grid points spread over the support, SY � RN , of Y. This discrete array of grid points
typically represents the center points of the histogram bins. An N-dimensional linear interpolation scheme is subsequently
employed to determine the value of the histogram of Y at any other arbitrary point, Y 2 SY , thus resulting in the target
mjpdf, pY , and therefore, the target mjPDF, PY , over the entire SY . Use of the normalized histogram to approximate pY is
acceptable in the view of the fact that the density estimation techniques currently existing in the literature are founded
on this primitive notion of normalized histogram. It should also be noted that the final objective of the present work is
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not estimation of the mjpdf of Y but construction of the PC representation of Y. The resulting PY is an absolutely continuous
function on SY because of the use of a linear interpolation scheme. A requirement for using the Rosenblatt transformation is
that PY be an absolutely continuous function on SY .

The simplest formulation of Approach 1 can be explained by considering a random variable, say, Z, which is a func-
tion of two dependent random variables, say, X and Y. The random variable Z is first approximated in terms of a PC rep-
resentation constructed w.r.t. a weight defined on the support of X. The resulting PC representation captures the effects
of Y into the PC coefficients which are random since they depend on Y. Subsequently, these random PC coefficients are
further approximated with another set of orthogonal expansions constructed w.r.t. another weight defined on the sup-
port of Y [34].

Let us illustrate the approach now by using a 2-dimensional random vector, say, Y ¼ ½y1; y2�
T . The formulation can

be readily extended to the random vector with more than two random variable components. Consider the 2-dimen-
sional data set as shown in Fig. 1. The corresponding histogram is shown in Fig. 2. The target mjpdf, pY , based on
2-dimensional linear interpolation of the histogram is shown in Fig. 3. The motive here is to pictorially describe the
formulation; therefore, the specific values of the associated data or values of the resulting function and variables
are not relevant.

The conditional pdf of y1, given y2 ¼ y2, induced by py1y2
is denoted by p1j2 and shown in Fig. 4 for different values of

y2 2 sy2 , in which sy2 ¼ ½l2;m2� � R is the support of y2. The slices representing p1j2 as shown in this figure are obtained
from the corresponding slices of Fig. 3 by simply making the area under each slice unity because area under a pdf is al-
ways unity,
p1j2ðy1jy2Þ ¼
py1y2

ðy1; y2ÞR
sy1

py1y2
ðy1; y2Þdy1

¼
py1y2

ðy1; y2Þ
py2
ðy2Þ

;

in which sy1
¼ ½l1;m1� � R is the support of y1 and py2

is the marpdf of y2. Let the associated conditional PDF be denoted by
P1j2 given by,
Fig. 1. 2-Dimensional illustration: data points.

Fig. 2. 2-Dimensional illustration: histogram.



Fig. 3. 2-Dimensional illustration: the target mjpdf, pY � py1 y2
, of Y ¼ ½y1; y2�

T .

Fig. 4. 2-Dimensional illustration: three slices representing the conditional pdf of y1, given y2 ¼ y2, for three different y2’s.
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P1j2ðy1jy2Þ ¼
R y1

l1
py1y2

ðy; y2Þdy

py2
ðy2Þ

;

as depicted in Fig. 5. Consider P1j2ðy1jy2Þ and Pn1 ðn1Þ as two random variables (functions of y1 and n1, respectively). The PDF of
both the random variables are uniform distribution supported over [0,1] [10, Theorem 2.1]. Then, the mapping, f : n! Y, can
be defined by employing the Rosenblatt transformation [4] as shown below,
P1j2ðy1jy2Þ¼
d Pn1

ðn1Þ ð7Þ

) y1¼
d ðP�1

1j2Pn1 Þðn1jy2Þ ð8Þ

¼ lim
K!1

XK

j¼0

ajðy2ÞWjðn1Þ: ð9Þ
Fig. 5. 2-Dimensional illustration: three slices representing the conditional PDFs of y1, given y2 ¼ y2, for three different y2’s.
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The equalities, ‘‘¼d ”, above should be interpreted in the sense of distribution implying that the PDFs of the random variables
in the left-hand-side (lhs) and the right-hand-side (rhs) of each equality are identical. Eq. (7) ensures that the conditional
PDF of y1, given y2 ¼ y2, is precisely given by P1j2 [10, Theorem 2.1] as required.

It should be noted here that by construction (because of use of a linear interpolation scheme) and choice of PDF of n1,
f1j2 � P�1

1j2Pn1 is piecewise smooth [35, p. 18] on the support, sn1 # R, of n1, and also second-order,R
sn1

f 2
1j2ðn1jy2Þpn1

ðn1Þdn1 <1. This results in the PC representation of f1j2 as shown by the rhs of (8). It should be noted that

while y1 and the rhs of (8) is equal in distribution,
y1¼
d f1j2ðn1jy2Þ ¼ lim

K!1

XK

j¼0

ajðy2ÞWjðn1Þ; ð10Þ
the equality, ‘‘=”, above or in (8) follows from f1j2ðn1jy2Þ (not from y1) and is valid in the mean-square sense. By the piecewise
smoothness and second-order conditions, the equality is also valid at every continuity point of f1j2 [36, Chapter 4] implying
that the equality can as well be interpreted in almost sure (a.s.) sense w.r.t. Pn1 .

The deterministic (since, given y2) PC coefficient, fajðy2Þ; j 2 Ng, in (10) is given by,
ajðy2Þ ¼
E f1j2ðn1jy2ÞWjðn1Þ
� 	

E W2
j ðn1Þ

h i ; j 2 N: ð11Þ
The determination of ajðy2Þ requires computation of the following integral,
E f1j2ðn1jy2ÞWjðn1Þ
� 	

¼
Z

sn1

ðP�1
1j2Pn1 Þðn1jy2ÞWjðn1Þpn1

ðn1Þdn1:
The evaluation of this integral involves computation of the inverse of P1j2. Since, in the current context, P1j2 is based on ob-
served histogram-based conditional PDF, no suitable analytical inverse function exists for such nonparametric PDF. There-
fore, inverse of this function needs to evaluated numerically while evaluating the above integral. This might be
computationally expensive or/and numerically instable. A computationally efficient scheme based on a surrogate function
(instead of using P�1

1j2Pn1 ) is described in Appendix A.
For several different values of y2 2 sy2

, the PC coefficients, fajðy2Þgj2N, need to be computed. Let the support,
sy2 ¼ ½l2;m2� � R, be divided equally into n2 2 N intervals. Then, coordinates of the points defining these intervals are given
by yðkÞ2 ¼ l2 þ k½ðm2 � l2Þ=n2�; k ¼ 0; . . . ;n2. For each slice defined by P1j2ðy1jy

ðkÞ
2 Þ, compute the PC coefficients, fajðyðkÞ2 Þgj2N, by

using (11). A few typical profiles of the mapping, N 3 j#ajðy2Þ 2 R, for given y2 are depicted in Fig. 6.
For any given j 2 N, the set of pairs, fyðkÞ2 ; ajðyk

2Þg
n2
k¼0, as just determined is next used to construct the mapping,

sy2 3 y2#ajðy2Þ 2 R, by simply employing a linear interpolation scheme (note that this is an 1-dimensional version of a sim-
ilar problem for estimating pdf from the histogram defined over a discrete array of points). A few profiles of this mapping are
sketched in Fig. 7.

Since n2 2 N is a finite (but large) number, the mapping, y2#ajðy2Þ, for any given j 2 N, defined via linear interpolation
with fyðkÞ2 ; ajðyk

2Þg
n2
k¼0, is piecewise smooth. By the second-order condition on f1j2, it also implies that jajðy2Þj <1 for any given

j 2 N. It is, therefore, straightforward to select a suitable weight, say, defined by sy2
3 y2#w2ðy2Þ 2 ð0;1Þ, such thatR

sy2
a2

j ðy2Þw2ðy2Þdy2 <1. Then, a set of basis functions, fwkgk2N, orthogonal w.r.t. the weight w2ð�Þ;
R

sy2
wmðy2Þwnðy2Þ

w2ðy2Þdy2 ¼ 0; m–n, can be employed to expand the function, y2#ajðy2Þ, in the following series [36, Chapter 4],
ajðy2Þ ¼ lim
K!1

XK

k¼0

bjkwkðy2Þ: ð12Þ
Fig. 6. 2-Dimensional illustration: j#ajðy2Þ for given y2.



Fig. 7. 2-Dimensional illustration: y2#ajðy2Þ for given j 2 N.
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This series expansion is valid at every continuity point of aj with bjk computed from,
bjk ¼

R
sy2

ajðy2Þwkðy2Þw2ðy2Þdy2R
sy2

w2
kðy2Þw2ðy2Þdy2

: ð13Þ
The denominator is readily available in the literature for many commonly used orthogonal polynomials [19]. The numerator
can be evaluated by using any standard numerical integration scheme.

Use of (12) in (10) results in,
y1¼
d f1j2ðn1jy2Þ ¼ lim

K1!1
K2!1

XK1

j¼0

XK2

k¼0

bjkwkðy2ÞWjðn1Þ: ð14Þ
The marPDF P2 of y2 can also be similarly (consider 1-dimensional cases of the series of Figs. 1–6) employed to obtain the
following PC expansion for y2,
y2¼
d f2ðn2Þ ¼ lim

K!1

XK

j¼0

cjWjðn2Þ; ð15Þ
in which f2 � P�1
2 Pn2 and cj is given by,
cj ¼
E f2ðn2ÞWjðn2Þ
� 	

E W2
j ðn2Þ

h i ; j 2 N; ð16Þ
and can be efficiently computed by using the simple scheme described in Appendix A.
The PC expansions, (14) and (15), constructed from the available measurement data, completely characterize the random

vector Y ¼ ½y1; y2�
T . In a computational setting, the series in (14) and (15) are truncated after a suitable large number of

terms.
Sampling of Y is straightforward. The random variables, n1 and n2, are statistically independent. First, use (15) to generate

a sample, y2, of y2 and then use the realized value, y2, in (14) to get y1. Repeat the process until the desired number of sam-
ples of Y ¼ ½y1; y2�

T is generated.
Extension of the above 2-dimensional formulation to the N-variate Y is now summarized below,
y1¼
d P�1

1j2:NPn1 ðn1jy2; . . . ; yNÞ ¼
XKð1Þ1

i1¼0

� � �
XKð1ÞN

iN¼0

bð1Þi1 i2 ���iN wiN ðyNÞ � � �wi2 ðy2ÞWi1 ðn1Þ;

y2¼
d P�1

2j3:NPn2 ðn2jy3; . . . ; yNÞ ¼
XKð2Þ2

i2¼0

� � �
XKð2ÞN

iN¼0

bð2Þi2 ���iN wiN ðyNÞ � � �wi3 ðy3ÞWi2 ðn2Þ;

..

.

yN ¼
d P�1

N PnN
ðnNÞ ¼

XKðNÞN

iN¼0

bðNÞiN
WiN ðnNÞ:
Here, Pijðiþ1Þ:N is the conditional PDF of yi, given yiþ1 ¼ yiþ1; . . . ; yN ¼ yN , induced by PY and bðiÞji jiþ1 ���jN represents ðN � ði� 1ÞÞ-
dimensional matrix of PC coefficients of size KðiÞi � � � � � KðiÞN with KðiÞi ; . . . ;KðiÞN being the suitable large integers retained in
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the corresponding series expansion. The random variables, n1; . . . ; nN , are statistically independent. Each digital sample of Y
is generated starting with sampling yN and successively proceeding towards sampling yN�1; yN�2; . . . ; y1.

Finally, let us conclude this section by emphasizing that Pijðiþ1Þ:N should not be computed by integrating pY since it would
then involve a substantial computational effort to perform several multidimensional integrations while approximating the
corresponding function, P�1

ijðiþ1Þ:NPni
(see Appendix A). Instead, Pijðiþ1Þ:N should be computed from the estimate of mjpdf of

ðyi; . . . ; yNÞ determined by considering only the measurement data associated with yi; . . . ; yN , and ignoring the data associ-
ated with y1; . . . ; yi�1. This would always involve 1-dimensional integration in computation of Pijðiþ1Þ:N ,
Pijðiþ1Þ:Nðyijyiþ1; . . . ; yNÞ ¼
R yi

li
pyi ;...;yN

ðyi; . . . ; yNÞdyi

pyiþ1 ;...;yN
ðyiþ1; . . . ; yNÞ

:

Here, the integration is carried over the domain, ½li; yi�# syi
¼ ½li;mi� � R, where syi

is the support of yi. This scheme would be
relatively computationally inexpensive even after the additional computational overhead required to estimate the set of
pdfs, py2 ;...;yN

; py3 ;...;yN
; . . . ; pyN

, (from the corresponding data) that need to determined only once at the outset.

3.2. Approach 2: based on marginal PDFs and SRCC

In this approach, the unknown relationship between n and Y is defined again by having recourse to the Rosenblatt trans-
formation establishing a set of N mappings, each of which is similar to (15), between the corresponding kth components, yk

and nk; k ¼ 1; . . . ;N. Only marPDF of yk is used in this approach. Unlike nk’s in Approach 1, the random variables, n1; . . . ; nN ,
here are, however, statistically dependent enforcing the required statistical dependencies among yk’s. The statistical depen-
dency is characterized via SRCC. As indicated earlier, PY in this approach is assumed to be completely characterized by the
marPDFs and the SRCC matrix of Y. In the following, the definition and the relevant properties of SRCC are briefly reviewed
before describing Approach 2.

3.2.1. Spearman’s rank correlation coefficient
The rank correlation coefficient or Spearman’s q is named after Charles Edward Spearman who first introduced it in 1904.

The rank correlation coefficient between random variables, yi and yj, is simply the PCC applied to the rank of the observed
samples of yi and yj rather than to their observed or measured values. When there is no tie in the observed values of the data,
a simple formula exists for the calculation of SRCC Further theoretical treatment and calculation procedure of SRCC including
the case of tied data values can be found in the literature [9]. The statistical toolbox of MATLAB provides the function, corr,
that can be used to calculate SRCC.

Definition 1. The Spearman’s rank correlation coefficient between two random variables, yi and yj, with marginal probability
distribution functions, respectively, being given by Pyi

and Pyj
, is defined as,
qsðyi; yjÞ ¼ qðPyi
ðyiÞ; Pyj

ðyjÞÞ ¼ 12covðPyi
ðyiÞ; Pyj

ðyjÞÞ: ð17Þ
Here, q is the Pearson’s correlation coefficient (or the usual product–moment correlation coefficient), cov is the covariance
and the multiplying factor, 12, emanates from variance of Pyk

ðykÞ; k ¼ i; j, since Pyk
ðykÞ � Uð0;1Þ with Uð0;1Þ being uniform

distribution on [0,1]; see e.g., [10, Theorem 2.1].

It must be noted from the above definition that SRCC and PCC coincide if PDFs of yi and yj are Uð0;1Þ. In general, they are,
however, different.

A collection of a few salient properties of qs is enlisted below [8,37]. It

	 always exists and is symmetric;
	 is independent of marpdf of yi and yj;
	 is invariant under strictly monotone transformation of yi and yj;
	 can take any values from the closed interval, ½�1;1�;
	 is zero if yi and yj are statistically independent, the converse is not true.

The most important property to be used in the present work is invariance under monotone transformation property of
SRCC.

Now that the relevant information on SRCC is set forth, Approach 2 is described below by introducing the mapping,
nk#yk; k ¼ 1; . . . ;N, through the use of the Rosenblatt transformation [4] applied on each nk separately,
yk¼
d qkðnkÞ ¼ lim

Kk!1

XKk

j¼0

cjkWjðnkÞ; qk � P�1
yk

Pnk
: ð18Þ
This PC representation is similar to (15). The marPDF, Pyk
, is estimated from the normalized and linearly interpolated 1-

dimensional histogram of the measurement data on each random variable component, yk, separately. This can be readily per-
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formed as already discussed in Section 3.1. The PC representation of qk in (18) is, therefore, valid at every continuity of qk

implying that the equality, ‘=’, can also be interpreted in a.s. sense w.r.t. Pnk
. The PC coefficient, cjk, is given by,
cjk ¼
E qkðnkÞWjðnkÞ
� 	

E W2
j ðnkÞ

h i ; j 2 N: ð19Þ
A simple and computationally efficient scheme based on 1-dimensional interpolated surrogate function, approximating
P�1

yk
Pnk

, is described in Appendix A to determine fcjkgj2N; k ¼ 1; . . . ;N. The series in (18) is truncated after a large number
of terms Kk in a computational setting.

Since SRCC is preserved under monotone transformation, the SRCC matrices of n ¼ ½n1; . . . ; nN�
T and Y are identical. The

target N � N SRCC matrix, ½qs�, is simply estimated from the available measurement data on Y. For i; j ¼ 1; . . . ;N, the
ði; jÞth element of ½qs� is denoted by ðqsÞij, where ðqsÞij ¼ qsðyi; yjÞ. The samples of n, with SRCC matrix ½qs�, are first generated.
Subsequently, samples of each nk are substituted in the corresponding PC expansion of yk to obtain the realizations of yk. The
resulting samples of Y are consistent with the target set, fpyk

gN
k¼1, of marpdfs and the target SRCC matrix ½qs�.

The commonly used PC random variables, n1; . . . ; nN , that are often chosen to construct PC representation, are standard
Gaussian random variables, uniform random variables on ½�1;1�, beta type I random variables on ½�1;1� or gamma random
variables. The generation of samples of such statistically independent random variables, as required in Approach 1, is
straightforward. The samples of statistically dependent random variables, particularly when the statistical dependency is
characterized by a specified SRCC matrix ½qs�, as required in Approach 2, can also be generated by using the existing simu-
lation techniques. For the sake of completeness of the present work, two such useful and easily implementable techniques
are summarized in the next two subsections. These two techniques are directly related to concept of copula [38,39], knowl-
edge of which, though useful, is not required here.

3.2.2. Normal copula technique
This technique assumes existence of an underlying correlated N-dimensional standard Gaussian random vector,

X ¼ ½x1; . . . ;xN�T , in which each component xi is a standard Gaussian random variable. Then, the correlation (also, covariance)
matrix ½q� of X is determined as follows.

It was shown by Pearson in 1904 that [37] the PCC and SRCC are related according to,
qðxi;xjÞ ¼ 2 sin
p
6

qsðui;ujÞ
� �

; ð20Þ
in which ui � Uð0;1Þ and uj � Uð0;1Þ are uniform random variables. If the PDF of the standard Gaussian random variable is
denoted by Uð�Þ, then UðxiÞ � Uð0;1Þ; 8i [10, Theorem 2.1]. Let us then select ui’s in (20) as ui � UðxiÞ. Consider now the fol-
lowing mapping based on the Rosenblatt transformation,
ui � UðxiÞ¼
d Pyi
ðyiÞ; i ¼ 1; . . . ;N; ð21Þ
since Pyi
ðyiÞ � Uð0;1Þ [10, Theorem 2.1]. By the invariance under monotone transformation property of the SRCC, we have

qsðyi; yjÞ ¼ qsðPyi
ðyiÞ; Pyj

ðyjÞÞ. Then, by (17) and ‘‘¼d ” in (21), the SRCC matrix of U ¼ ½u1; . . . ;uN�T is given by ½qs� with its
ði; jÞth element being given by qsðyi; yjÞ estimated based on the measurement data on Y. The correlation (or covariance) ma-
trix ½q� of X then follows from (20), with the ði; jÞth, i; j ¼ 1; . . . ;N, element qij of ½q� being given by qðxi;xjÞ. Simulation of the
standard Gaussian random vector X with covariance matrix ½q� is then straightforward. In the literature, PDF of U is usually
referred as normal copula.

Since Pni
ðniÞ � Uð0;1Þ [10, Theorem 2.1], use of the following transformation (again based on the Rosenblatt

transformation),
Pni
ðniÞ¼

d UðxiÞ � ui

) ni ¼
d P�1

ni
UðxiÞ;

9=;; i ¼ 1; . . . ;N; ð22Þ
yields the samples of n ¼ ½n1; . . . ; nN�
T . The SRCC matrix of n again turns out to be ½qs� by the invariance under monotone trans-

formation property of the SRCC. The closed form expression of, or the efficient algorithm to compute the inverse function,
P�1

ni
, associated with the commonly used PC random variables can be readily extracted from the standard textbook on MC

simulation [40,10].
The MATLAB statistical toolbox provides many such useful functions. Clearly, the simulation of n with SRCC matrix ½qs�

essentially reduces to the simulation of an N-dimensional standard Gaussian random vector with covariance matrix ½q� (if
it exists).

Let us consider the last remark about the existence of feasible covariance matrix of X more carefully. Denote the set of
symmetric N � N positive-definite real matrices by Mþ

NðRÞ and SNðRÞ ¼ fA : A 2Mþ
NðRÞ; Aii ¼ 1g, in which Aij is ði; jÞth ele-

ment of A. Then, for any ½qs� 2 SMðRÞ, there always exists a random vector with uniform marPDFs and SRCC matrix ½qs�
[37, Theorem 4.4, pp. 100, 124–125]. It does not, however, necessarily mean that its uniform random variable components
can be given by UðxiÞ’s. Counterexamples exist in the literature ([7]; [37, Section 4.2]; [10, Section 12.5.2]; [37, Section 4.2])
showing that application of the mapping defined by (20) on each element ðqsÞij of ½qs�may produce a matrix ½qð1Þ� that is not a
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positive-definite matrix, thus limiting the applicability of the normal copula technique. This problem becomes more com-
mon as the dimension N of the random vector increases. An adaptation of the normal copula technique has been developed
to address this difficulty; it is described next. However, if X exists, i.e., if a feasible (positive-definite) covariance matrix is
found, then the normal copula technique is the fastest method among all the currently existing methods.

3.2.3. Augmented normal copula techniques
Application of these techniques ensures that the samples of U follow the uniform marPDFs but the SRCC or PCC matrix

(identical by definition for uniform distribution) is approximate in the sense that the target correlation matrix is modified to
a ‘new’ correlation matrix that is close, in some sense, to the originally estimated correlation matrix. Let us denote the ori-
ginal matrix by ½qð1Þs � and the modified positive-definite correlation matrix by ½qs�. With this new target correlation matrix
½qs�, the use of the normal copula technique, as described in the previous subsection, becomes feasible.

One such technique [13, Section 5] suggests to adapt ½qð1Þs � and ½qð1Þ�, to new positive-definite correlation matrices, ½qs� and
½q�, by using a simple iterative scheme based on the spectral decomposition of real Hermitian matrices. While this scheme
might work in practice, it is likely to be little unwieldy, particularly in high dimension, requiring too many iterations often
resulting in relatively large error between the old and modified matrices.

Another technique [11] is a constrained minimization problem in the space of X and relatively more robust. The norms
L1 ¼

P
i<jjqij � qð1Þij jand L1 ¼maxi<jjqij � qð1Þij j are minimized subject to ½q� 2 SNðRÞ [11]. It is, however, not guaranteed that

the resulting ‘new’ correlation matrix ½qs� of U (by applying the inverse transformation of (20) on ½q�) would be positive-def-
inite and close to the originally specified target correlation matrix ½qð1Þs � of U. In such a situation, an iterative scheme like the
one proposed earlier in the literature [13, Section 5] might be adopted.

In the present work, the following constrained minimization problem, similar to the works presented in earlier literature
[11], is recommended,
2 http
minimize k½q� � ½qð1Þ�kF

subject to ½q� 2 SNðRÞ;
ð23Þ
or/and other meaningful constraints; see e.g., [11, Section 5]. Here, k � kF is the Frobenius (matrix) norm defined by
kCkF ¼ ð

P
ijjcijj2Þ1=2, in which cij is the ði; jÞth element of C. The Frobenius norm is preferred (over L1 and L1 norms) since

it shows relatively much smaller error (even in high dimension). The above optimization problem can be efficiently solved
by employing the semidefinite program (SDP) [41]. Many efficient freely available softwares2 exist to solve such SDP. In the
present work, a public domain MATLAB toolbox, YALMIP, developed by Löfberg [42], is used.

The techniques as discussed above should be applied only if the new correlation matrix ½qs� of U is positive-definite and is
close, in the appropriate sense, to the originally specified target correlation matrix, ½qð1Þs �. Otherwise, alternative techniques
[7,37] at the expense of additional computational time and resource might be investigated. In many practical applications,
the two recommended techniques—normal copula technique and augmented normal copula technique—are, nevertheless,
likely to be satisfactory.

4. Practical illustration and discussion

The proposed techniques are employed here to construct the PC representation of a spatio-temporal random temperature
field by using a set of oceanographic data obtained from a shallow-water acoustics transmission experiment. This experi-
ment will be referred to in the sequel as SWARM95 (Shallow Water Acoustics in Random Medium). It was conducted during
the month of July–August in 1995 in the Mid-Atlantic Bight continental shelf region off the coast of New Jersey [1].

The primary objective of the SWARM95 experiment was to investigate the effects of random variations of the oceano-
graphic parameters, for example, temperature and salinity fields, on the statistical properties of an acoustic field propagating
through the water column bounding the ocean surface and the ocean bottom. The acoustic field is perturbed significantly by
a small change in water column sound speed distribution. The sound speed variation is a function of an internal gravity wave
field that, in turn, depends on water temperature and salinity distributions. Both temperature and salinity typically have a
small random component. This internal wave field is also governed by partial differential equations with random coefficients
depending on the oceanographic parameters. Further details and precise objectives of the experiment are documented and
discussed in other papers [1,43]. In this section, modeling of the spatio-temporal random temperature field from the ocean-
ographic measurements of SWARM95 experiment is considered. The PC representation of the spatio-temporal random field
modeling the oceanographic parameters would be useful in propagating the uncertainty in a rational manner in order to pre-
dict the statistical properties of the acoustic field and in estimating the confidence interval of the associated statistical
parameters by employing the techniques available elsewhere [44,45].

There are three vertically oriented thermister strings located within a water column of maximum depth 72 m. Each string
contains 11 temperature sensors measuring the temperature histories. These temperature senors are located at depth
h 2 D ¼ f16;21;26;31;36;38:5;41;46;48:5;51;56gm. The temperature data are sampled every minute for a total of
17,281 samples from each sensor. The three strings will hereafter be referred to as tav309, tav307 and tav598. A few typical
://www-user.tu-chemnitz.de/~helmberg/semidef.html.

http://www-user.tu-chemnitz.de/~helmberg/semidef.html


Fig. 8. A few experimentally measured time histories (shown only for a segment o
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time histories obtained from tav309 are shown in Fig. 8. Both linear (background) and nonlinear internal wave fields are
present in the data. The later appears in the form of solitary wave trains, while the former are spatially diffuse and typically
treated as a random field. It is necessary to separate the background internal wave field from the solitary wave contribution
while computing some intermediate oceanographic parameters, for example, buoyancy frequency, that is required to com-
pute the sound speed fluctuation [43]. Therefore, only the ‘‘quiescent” part of the measurement data excluding the solitary
waves must be used while computing such intermediate parameters. The most active solitary wave region is in the upper
half of the water column.

4.1. Selecting the regions of low internal solitary wave activity

There is some subjectivity in choosing the quiescent part of the temperature data because it is next to impossible to com-
pletely separate the background internal wave field from the solitary wave contribution. The mathematical decomposition of
the sound speed distribution into deterministic, time-dependent field and a random fluctuation about this deterministic
field, as discussed in previous work [43], is an idealization. In a real ocean experiment, the situation is much more compli-
cated. In order to estimate the oceanographic parameters, e.g., buoyancy frequency, it is important to try to stay away from
regions containing the obvious large fluctuations that often start with a jump discontinuity. These regions are usually asso-
ciated with the main components of the solitary wave train. Therefore, the highly variable regions, containing the strong sol-
itary wave activity, are not used in the following analysis.

By visual inspection, the regions in the boxes, for example, as shown in Fig. 8, are examples of ‘‘low” internal solitary wave
activity and suitable for reliable estimation of the buoyancy frequency, and consequently, selected for further analysis. A to-
tal of 8 time-segments each with 99 temperature measurements at any h 2 D are selected from the whole span of the exper-
imentally measured time history. Out of 17,281 samples available from each sensor, only 8� 99 samples are deemed to be
useful in constructing the PC representation of the spatio-temporal random temperature field. The resulting PC representa-
tion would be useful for other analysis involving (stochastic) oceanographic parameters that depend on the random temper-
ature field.

More detailed features of a typical quiescent segment showing the time histories collected from a few sensors (at differ-
ent depths) attached to one of the three strings (tav309) are shown in Fig. 9. Each quiescent segment with 99 samples is
further divided into nine smaller segments with each of these smaller segments containing 11 samples as shown in this
figure.

At any given time instant, all the 11 sensors located at h 2 D are measuring the temperature (at 1 min sampling rate)
simultaneously. Consider a spatio-temporal domain defined by one smaller segment associated with the quiescent zone
and the 72 m depth of water column within which SWARM95 experiment was conducted. Let us assume that the random
temperature field is statistically independent and identically distributed (i.i.d.) both across the smaller segments with 11
samples as shown in Fig. 9 within a given quiescent zone as well as across the different quiescent zones as shown in
Fig. 8. Without any further loss of generality, time can be reset to t ¼ 0 at the beginning of each of these smaller segments
as illustrated in Fig. 10. Denote the spatio-temporal domain thus described by ðT � DÞ in which T ¼ ð0;11Þmin and
D ¼ ð0;72Þm. Denote the random temperature field evolving over ðT � DÞ by ðT � DÞ 3 ðt;hÞ# Cðt;hÞ 2 R.

4.2. Detrending the data

The average trends of the oscillatory time histories are obtained by fitting the data linearly within each smaller segment
as shown as dotted lines in Fig. 10. Within a given segment, suppose that the experimentally measured data, for any given
f the total experimental time span).



Fig. 10. A typical subset of ðT � DÞ with two time histories collected from tav309; dotted lines indicate linear fit to the experimental data.

Fig. 9. A typical quiescent zone divided into nine smaller segments with 11 samples (shown for a few sensors).
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h 2 D, is represented by CðmeasÞðt;hÞ and the linear trend of the measurement by Cðt;hÞ. Then, define a normalized spatio-
temporal random temperature field, CðnÞðt;hÞ, as,
CðnÞðt;hÞ ¼ Cðt;hÞ � Cðt;hÞ
Cðt;hÞ

: ð24Þ
The experimental samples of CðnÞðt;hÞ can be readily deduced by substituting Cðt;hÞwith CðmeasÞðt;hÞ in (24). A few such typ-
ical experimental samples of CðnÞðt;hÞ are shown in Fig. 11.

In the following, CðnÞðt;hÞ is modeled by employing the approaches as proposed in the present work based on the resulting
experimental samples. Once the PC representation of CðnÞðt;hÞ is available, the PC representation of the original random tem-
perature field, Cðt;hÞ, immediately follows from Cðt;hÞ ¼ Cðt;hÞCðnÞðt;hÞ þ Cðt;hÞ. The linear fit, Cðt;hÞ, has already been de-
duced by using the experimental samples of Cðt;hÞ. The separation of this average trend from Cðt;hÞ essentially adds a
certain flexibility to the scheme of modeling Cðt;hÞ as adopted in this numerical illustration. This, in particular, facilitates
in inferring the PC coefficients of Cðt;hÞ; ðt;hÞ R ðT � DÞ (assuming that the corresponding Cðt;hÞ can be reliably estimated
from the experiment or is available from other sources/experiments). The normalization by Cðt; hÞ as shown in (24) also
facilitates in achieving certain numerical stability to the ensuing analysis since values of the experimental measurements
collected from sensors at different depths show significant variations (see Fig. 12). This variation should be compared with
the variation after the normalization as shown in Fig. 13.

4.3. Stochastic modeling of CðnÞðt;hÞ

For any given ðt;hÞ 2 ðT � DÞ; CðnÞðt;hÞ represent a random variable. Clearly, the experimental measurements essentially
represent the samples of a finite set of these random variables. Recall that D represents the set of depth coordinates of the



Fig. 11. A few typical profiles of experimental samples of CðnÞðt; hÞ; ðt; hÞ#CðnÞðt; hÞ at h = 16 m depth.

Fig. 12. Experimental variation of temperature measurements after removing the linear trends and before normalization (shown for two time histories and
over a quiescent zone).

Fig. 13. Variation of the normalized temperature measurements (shown for two time histories and over a quiescent zone).
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sensors attached to the thermister strings along 72 m water column. Let us now also denote the set of time instants (per
convention of Fig. 10) of the collection of experimental samples by T ¼ f1;2; . . . ;10;11g (since sampling rate is 1 min). Note
the difference between the continuous space, ðT � DÞ, over which CðnÞðt;hÞ is evolving and the discrete space, ðT � DÞ, con-
sisting of only a finite set of points at which the experimental samples are available.
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Let us denote the set of 11� 11 random variables, fCðnÞðt;hÞgðt;hÞ2ðT�DÞ, collectively by Y, i.e., N ¼ dimðYÞ ¼ 121. Since each
quiescent zone is divided into nine smaller segments (see Fig. 9) and eight quiescent zones are selected (see Section 4.1)
across the whole span of the experimental time histories, there are 8� 9 ¼ 72 statistically independent samples of Y from
each string. In the present work, a space and time separability condition of statistical dependency of the original random
temperature field is assumed for the time and spatial extent spanning the sea surface. However, no such space–time sepa-
rability is assumed for the time and depth, i.e., for ðT � DÞ. The random variable components of Y are, therefore, statistically
dependent. Furthermore, we note again that the underlying spatio-temporal stochastic process is modeled here as a non-sta-
tionary random field evolving over both time and depth (i.e., non-stationary in time and non-homogeneous in depth). From
three vertical strings, tav309, tav307 and tav598 (about 10 km away from each other), a total of n ¼ 3� 72 ¼ 216 samples of
Y are available.

The task is now to construct PC representations of Y by using the approaches as proposed in the present work with 216
samples of Y. The PC representations would be consistent with the information extracted from these 216 experimental sam-
ples. Further details and results are discussed in the next subsections.

4.4. Modeling of Y via Approach 1

The Karhunen–Loève (KL) decomposition is first employed to construct a reduced order model of the non-Gaussian ran-
dom vector, Y. Though the resulting non-Gaussian KL random variable components are uncorrelated, they are, in general,
statistically dependent. Approach 1 is subsequently used to characterize this reduced order model of Y.

4.4.1. KL decomposition of Y
The KL expansion [46, Chapter 11] of a stochastic process represents the uncountably infinite number of random variables,

that characterize the stochastic process, as a linear decomposition of countably infinite number of random variables, often
referred as KL random variables. The orthogonal basis functions of this linear decomposition are given by eigenfunctions
of the covariance function of the stochastic process. The coordinates of the decomposition constitute the set of countably
infinite number of random variables, and are global variables (like Fourier coefficients). The non-stationarity of the stochastic
process is captured by the basis functions of the linear decomposition, i.e., eigenfunctions of the covariance function. For a
stationary process, the KL expansion reduces to the usual spectral representation [3,47]. A finite number of dominant KL ran-
dom variables is typically retained in the linear decomposition to obtain a KL approximation. The number of dominant KL
random variables depends on the stochastic fluctuations of the stochastic process over its spatio-temporal domain. The
KL approximation converges in mean-square sense to the stochastic process [46, Section 37.5]. It can be shown that the
KL approximation is optimal in the sense of minimum MSE [15]. Furthermore, the mean-square convergence can be shown
to be uniform on the spatio-temporal domain over which the stochastic process evolves [46]. The mean-square convergence
criteria remains valid irrespective of the non-stationarity of the process.

For a finite-dimensional representation Y of the stochastic process, the KL approximation is typically employed as a de-
vice to further reduce the stochastic dimension (i.e., N) as described next. Let us denote the N � N covariance matrix of Y by
RY . If n experimental samples of Y are denoted by Y1; . . . ;Yn, then the covariance matrix RY can be estimated by using the
samples as ð1=ðn� 1ÞÞYoYT

o . Here, Yo ¼ ½Y1o; . . . ;Yno� represents an N � n matrix and Yko � Yk � Y; k ¼ 1; . . . ;n, with Y being
unbiased estimate of the mean vector of Y, i.e., Y ¼ ð1=nÞ

Pn
k¼1Yk. Investigation of the effects of n and N on the estimate of RY

is beyond the scope of the present work. It is assumed here that these effects are negligible, and this estimate is used in the
KL approximation as described next.

Following the KL expansion procedure [46, Chapter 11], let us collect the dominant KL random variable components,
fz01; . . . ; z0Mg; M 6 N, in an M-dimensional random vector, Z0 ¼ ½z01; . . . ; z0M �

T . If Vi is the eigenvector of RY associated with
the ith largest eigenvalue of RY , then Z0 is related to Y by,
Z0 ¼ VT
MðY � YÞ; ð25Þ
in which VM ¼ ½V1; . . . ;VM� is the N �M matrix of eigenvectors fV1; . . . ;VMg associated with the M largest eigenvalues. The
eigenvectors are chosen such that fVigN

i¼1 is a set of orthonormal eigenvectors. The variance of the ith KL random variable
z0i is given by the ith largest eigenvalue of RY to be denoted by r2

z0
i
. The value of M is selected such that

trðRYÞ ¼
PN

i¼1varðyiÞ 

PM

i¼1varðz0iÞ ¼
PM

i¼1r2
z0

i
with var and tr, respectively, representing variance and trace operators. The

KL approximation YðMÞ of Y is then given by YðMÞ ¼ VMZ
0 þ Y, where Z0 is defined by (25). If the error associated with KL

approximation is measured by �M ¼ Y �YðMÞ ¼
PN

i¼Mþ1Viz0i, then the KL approximation YðMÞ converges in mean-square sense
to Y implying that EðkY �YðMÞk2Þ ! 0 as M ! N [46,19]. Here, k � k represents Euclidean norm and Eð�Þ represents expectation
w.r.t. the measure of Y. The associated minimum (optimal) MSE is given by EðkY �YðMÞk2Þ ¼ Eð�T

M�MÞ ¼
PN

i¼Mþ1varðz0iÞ [19].
The set of experimental samples of Z0 can be immediately obtained by replacing Y with Y1; . . . ;Yn in (25) resulting in

Z01; . . . ;Z0n. Let sz0
i
¼ ½ai; bi� � R be the support of z0i, and let a ¼ ½a1; . . . ;aM �T and b ¼ ½b1; . . . ; bM �

T . To enhance the regularity
of the ensuing numerical problem and to improve the efficiency of the associated computation, the data set is further scaled
to obtain another data set as shown below,
Zk ¼ 2 ðZ0k � aÞ � 1
b� a

� �� �
� 1M ; k ¼ 1; . . . ;n: ð26Þ
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Here, the symbol � represents element-wise product operator or the Hadamard product operator, 1M is an M-dimensional
column vector of 1’s, ai and bi can be estimated, respectively, as minðz0i

ð1Þ; . . . ; z0i
ðnÞÞ and maxðz0i

ð1Þ; . . . ; z0i
ðnÞÞ with z0i

ðkÞ being
the ith component of the kth sample Z0k ¼ ½z01

ðkÞ; . . . ; z0M
ðkÞ�, and finally, 1=ðb� aÞ needs to be interpreted as M � 1 column vec-

tor with its ith, i ¼ 1; . . . ;M, element being given by reciprocal of the ith element of ðb� aÞ. Denote this M-dimensional nor-
malized KL random vector associated with the samples, fZkgn

k¼1, by Z ¼ ½z1; . . . ; zM�T . The scaling in (26) is particularly
chosen so that Z is supported on ½�1;1�M , which would be in concordance, in some sense, of the support, ½�1;1�, of the uni-
form distributions used as measures of the PC random variables in Section 4.4.2. The following relation between Z and Y

then holds,
Table 1
Compar
comput
corresp

Rela

Mea

0

Y 
 YðMÞ ¼ VM aþ ðb� aÞ � 1
2
ðZ þ 1MÞ


 �� �
þ Y: ð27Þ
The approximation sign, ‘
’, in (27) emphasizes that Y is projected into the space spanned only by the largest M dominant
eigenvectors of RY to obtain the reduced order representation, Z.

The covariance matrix RY is first estimated based on n ¼ 216 samples. Here, M is chosen such thatPM
i¼1r̂2

z0
i


PM

i¼1r2
z0

i
¼ 0:999

PN
i¼1varðyiÞ dictating that M ¼ 78 dominant KL random variables should be considered (recall that

N ¼ dimðYÞ ¼ 121). Here, r̂z0
i

is an estimate of rz0
i
based on n ¼ 216 samples. Use of the dominant M eigenvectors, along with

the samples of Y, in (25) yields the set of samples of Z0 which, in turn, yields the samples of Z through (26). At this stage, a
crosscheck is performed to ensure that enough information is propagated from Y to Z as the dimension is reduced from
N ¼ 121 to M ¼ 78. The samples of Y are reconstructed back from the samples, fZkgn

k¼1, by using (27), i.e.,

YðMÞk ¼ bVM âþ ðb̂� âÞ � 1
2 ðZk þ 1MÞ

n oh i
þ Y. The presence of hat symbols is a reminder that the quantities are estimated

based on n ¼ 216 samples. The MSE of the relevant statistics computed from fYðMÞk g
n
k¼1 are compared with the corresponding

statistics computed from the original experimental samples, fYkgn
k¼1. The results are shown in Table 1.

Remark 1. Let us denote the ith eigenvalue of the true (unknown) continuous covariance function of the spatio-temporal
stochastic process by truer2

z0i
; i P 1. Then, an estimate of truer2

z0i
is given by r̂2

z0i
. The estimate r̂z0i

depends on the number of
experimental samples (i.e., n), the number of discrete spatio-temporal locations of the experimental measurements (i.e., N),
and the interpolation functions (e.g., finite element type shape functions) that one employs to infer values of the
experimental samples of the stochastic process at any other locations where experimental measurements are not available.
It can be shown that the MSE associated with the KL approximation is given by [48, Theorem 2.10],
XM

i¼1

ðtruer2
z0

i
� r̂2

z0
i
Þ þ

X1
i¼Mþ1

truer2
z0

i
:

As already indicated earlier, M is typically less than N. The first error term can be reduced by increasing n;N and better inter-
polation operator (see, for example, [48, Proposiiton 3.3]). If the true continuous covariance function is compact and piece-
wise analytic, then it can be shown that the eigenvalues truer2

z0
i
; i P 1, exponentially converge to 0 [48, Proposition 2.18]. The

compact and piecewise analytic condition on the true (unknown) continuous covariance function can be assumed to hold for
many practical applications including our work. Under more general conditions, other slow convergence, e.g., algebraic con-
vergence, criteria might be suitable [48]. Such convergence criteria imply that the second error term can be made negligibly
small for a sufficiently large M. For that M, if the first error term is also small enough, then we have achieved a good KL
approximation of the stochastic process. However, it cannot be verified in practice since the first error term depends on
the eigenvalues of the true continuous covariance function which will never be known in reality regardless of the approach
used for constructing a probabilistic model (a PC based or non-PC based model) from experimental measurements.

Approach 1 as proposed in Section 3.1 is now employed to construct the PC representation of Z based on n ¼ 216 exper-
imental samples of Z. While the non-stationarity of the stochastic process is captured in the KL representation by the eigen-
functions of the covariance function of the stochastic process, the departure of the probability measure of the KL random
variables from the chosen probability measure Pn will now be captured by the PC representation.

4.4.2. Construction of PC representation of Z via Approach 1
In order to gain computational advantage, it is assumed here that 78 random variable components of Z are pairwise sta-

tistically independent; particularly, the mjpdf of Z has the following form,
ison of statistics between experimental samples of the KL approximation YðMÞ and experimental samples of Y; relative MSE as shown below is
ed by using relMSEðSðMÞ; SÞ ¼ 100ðkSðMÞ � Sk2

F Þ=kSk
2
F , in which S represents sample statistic of experimental samples fYkgn

k¼1, and SðMÞ represents the
onding sample statistic of samples fYðMÞk g

n
k¼1.

tive MSE in percentage (%) for

n vector Covariance matrix SRCC matrix

0 0.1220
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pZðZÞ ¼ pz1z2
ðz1; z2Þpz3z4

ðz3; z4Þ � � �pz77z78
ðz77; z78Þ: ð28Þ
In the present work, this form is found to be capable of accurately capturing the practically relevant and important informa-
tion, as demonstrated later at the end of this section while discussing the results. Note that the random variable components,
z1; . . . ; z78, are ordered in the descending order of values of the associated eigenvalues, r̂2

z01
> � � � > r̂2

z078
, obtained in Section

4.4.1 (this, however, does not imply that fr̂zi
g78

i¼1 is also similarly ordered).
Let us generically indicate any of the pairs in (28) by ðzl; zuÞ; l 2 L � f1;3; . . . ;77g and u 2 U � f2;4; . . . ;78g. For any given

l 2 L and u 2 U , the target bivariate pdf, pzlzu
, is estimated by using a normalized histogram of the corresponding experimen-

tal samples appropriately collected from fZkgn
k¼1. Each bivariate histogram is constructed with 12� 12 bins on equally

spaced grids on the support, szlzu � ½�1;1�2, of ðzl; zuÞ.
By using the set of pdfs, fpzlzu

gl2L;u2U , PC representations (similar to (14) and (15)) of all the pairs are constructed. The set
of PC random variables, fnig

78
i¼1, is assumed here to be a set of statistically independent uniform random variables, all of

which are supported on ½�1;1�. For such ni’s, the orthogonal polynomials are Legendre polynomials given by,
W0ðniÞ ¼ 1; W1ðniÞ ¼ ni;

WjðniÞ ¼ 1
j ð2j� 1ÞniWj�1ðniÞ � 1

j ðj� 1ÞWj�2ðniÞ; if j P 2;

)
ð29Þ
and the variance of WjðniÞ is given by,
E W2
j ðniÞ

h i
¼ 1

2jþ 1
: ð30Þ
While computing the PC coefficients (see (11) and (16)), the proxy function, ~q, for flju � P�1
lju Pnl

or fu � P�1
u Pnu , as appropriate, is

based on dividing the support, szl
� ½�1;1�, of zl (when approximating flju) or szu � ½�1;1� of zu (when approximating fu), into

199 equal intervals (see Appendix A). In determining the series expansion (similar to (12)) of zu#ajðzuÞ, the basis functions
wk’s are also selected as Legendre polynomials that are orthogonal w.r.t. the weight wðzÞ ¼ 1=2 on ½�1;1� implying that the
denominator of (13) is given by 1=ð2kþ 1Þ. The set of PC coefficients of fljuðnljzuÞ is computed for 200 slices, that are equally
spaced along the support szu resulting in fzðkÞu ; ajðzk

uÞg
199
k¼0 (see Figs. 5–7). The function, zu#ajðzuÞ, based on this set is first

formed by employing linear interpolation scheme and later used to compute the PC coefficients bjk’s. The resulting PC rep-
resentation of ðzl; zuÞ given by expressions similar to (14) and (15) is truncated at K1 ¼ K2 ¼ K ¼ 19; 8l 2 L and 8u 2 U.

The constructed PC representation can be used to analytically derive bivariate pdf pðPCÞ
zlzu for all the pairs

ðzl; zuÞ; l 2 L; u 2 U . In the following, the set of bivariate pdfs fpðPCÞ
zlzu gl2L;u2U is estimated by using a set of nPC = 50,000 samples

to test the quality of the constructed PC representations. Use of nPC = 50,000 samples of statistically independent uniform
random variables fnig

78
i¼1 in the constructed PC representations yields a set, fZðPCÞ

k gnPC
k¼1, of 50,000 samples of Z. Let the esti-

mate of the bivariate pdf of each pair, ðzl; zuÞ, based on 50,000 PC samples be denoted by p̂ðPCÞ
zlzu . This bivariate pdf is simply

determined by employing linear interpolation scheme on a normalized histogram of PC samples with 25� 25 bins con-
structed on equally spaced grids on the support szlzu . Introduce the following relative MSE for pdf,
relMSEpðp̂ðPCÞ
zlzu

; p̂zlzu Þ ¼ 100

R
½�1;1�2 p̂ðPCÞ

zlzu ðzl; zuÞ � p̂zlzuðzl; zuÞ
n o2

dzl dzuR
½�1;1�2 p̂2

zlzu
ðzl; zuÞdzl dzu

;

in which p̂zlzu represents an estimate of pzlzu
based on n ¼ 216 samples.

It is found that maxl2L;u2U ½relMSEpðp̂ðPCÞ
zlzu ; p̂zlzu Þ� ¼ 2:4136% and minl2L;u2U ½relMSEpðp̂ðPCÞ

zlzu ; p̂zlzu Þ� ¼ 0:1217%. Bivariate pdf
based on 216 experimental samples and 50,000 PC realizations are plotted in Fig. 14 corresponding to
maxl2L;u2U ½relMSEpðp̂ðPCÞ

zlzu ; p̂zlzu Þ� ¼ 2:4136%. The associated contour plots are shown in Fig. 15.
In Table 2, a few practically significant statistics of experimental samples, fZkgn

k¼1, and PC samples, fZðPCÞ
k gnPC

k¼1, are
compared.
Fig. 14. Estimate of bivariate pdf of ðzl; zuÞ corresponding to maxl2L;u2U ½relMSEpðp̂ðPCÞ
zl zu ; p̂zl zu Þ� ¼ 2:4136%: (a) p̂zl zu and (b) p̂ðPCÞ

zl zu .



Fig. 15. Contour plots associated with the bivariate pdfs shown in Fig. 14: (a) p̂zl zu and (b) p̂ðPCÞ
zl zu .

Table 2
Comparison of statistics between experimental samples and PC samples of the normalized KL random vector Z; relative MSE as shown below is computed by
using relMSEðSðPCÞ; SÞ ¼ 100ðkSðPCÞ � Sk2

F Þ=kSk
2
F , in which S represents the appropriate sample statistic of experimental samples fZkgn

k¼1, and SðPCÞ represents the
corresponding sample statistic of PC realizations fZðPCÞ

k gnPC
k¼1.

Relative MSE in percentage (%) for

Mean vector Covariance matrix SRCC matrix

0.1103 0.1581 6.5934

Table 3
Comparison of statistics between experimental samples and PC samples of Y; relative MSE is similarly computed as explained in the caption of Table 2.

Relative MSE in percentage (%) for

Mean vector Covariance matrix SRCC matrix

2.8525 0.0124 6.3700
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While random variable components, fzig78
i¼1, of normalized KL vector, Z, are uncorrelated by construction resulting in zero

off-diagonal elements of the covariance matrix of Z, the SRCC matrix of Z would be fully populated (since fzig78
i¼1 are sta-

tistically dependent in the present work). The covariance matrix and SRCC matrix estimated from the experimental samples,
fZkgn

k¼1, that contain the information about this statistical dependency indeed display the respective characteristics. The PC
samples fZðPCÞ

k gnPC
k¼1, however, cannot capture the effect of this statistical dependency among the pairs fzl; zugl2L;u2U because of

the assumption of pairwise statistical independence in (28). The effect of this assumption can be assessed, in some sense, by
the deviation of the SRCC matrix based on PC samples from the SRCC matrix based on experimental samples. The value of
relative MSE for SRCC matrix as shown in the third column of Table 2 implies that the assumption of pairwise statistical inde-
pendence might be practically acceptable.

Finally, the set, fZðPCÞ
k gnPC

k¼1, are used to obtain the set, fYðPCÞ
k gnPC

k¼1, of PC samples of Y by taking recourse to (27). The statistics
of the resulting samples, fYðPCÞ

k gnPC
k¼1, are compared to that of the experimental samples, fYkgn

k¼1, and the results are shown in
Table 3.

Remark 2. Computations of ajðzuÞ’s and bjk’s involve bivariate histogram estimation and several numerical integrations. For
any given l 2 L and u 2 U, there are 200 slices representing 200 functions fljuð�jzuÞ’s for 200 discrete points along zu. For each
such slice, there are 20 PC coefficients fajðzuÞg19

j¼0 implying that we first need to compute 200� 20 such PC coefficients
ajðzuÞ’s. Subsequently, for any given j 2 f0;1; . . . ;19g, use of 200 PC coefficients ajðzuÞ’s available at 200 discrete points along
zu results in 20 PC coefficients fbjkg19

k¼0. For 8j, it thus leads to 20� 20 PC coefficients bjk’s. Computations of 20� 20 PC
coefficients bjk’s via 200� 20 PC coefficients ajðzuÞ’s are the most expensive computational overhead in the proposed
algorithm because of several numerical integrations involved in the computations. We need to repeat these computations for
all the 39 pairs of ðzl; zuÞ’s. These computations are executed solely in a single processor machine (Intel Xeon 3.2 GHz 2 GB
Memory). It requires less than 72 h to compute these 39� 20� 20 PC coefficients bjk’s via 39� 200� 20 PC coefficients
ajðzuÞ’s thus highlighting the affordability of the computational cost. The rest of the computational burden required for
Algorithm 1 is almost negligible compared to the above computational overhead. In this context, it is worth mentioning that
the maximum likelihood based approach in the context of PC coefficients estimation [28] is theoretically more appealing
since the dimension of the resulting PC representation of Y need not be same as the number, M, of dominant KL random
variable components (in the present case, M ¼ 78). Nevertheless, this maximum likelihood based approach, in its current
state, is computationally prohibitive. In the authors’ experience and opinion, it is believed that it would have taken several
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months to estimate the PC representation of Y in a similar single processor machine. Finally, we note that several modules of
the numerical tasks for both the approaches can be readily parallelized to substantially reduce the computational time.

Remark 3. It must be noted that computations of bjk’s and cj’s are required only once as a set-up process. Once we have
computed these PC coefficients, generation of PC samples, fYðPCÞ

k gnPC
k¼1, of Y is almost immediate. For example, generation

of 50,000 PC realizations of each pair of ðzl; zuÞ’s requires only about 1.1 second on average, and consequently, 50,000 PC
realizations of Y (finite-dimensional representation of the stochastic process) are generated in about 45 s on average. As
indicated earlier, most of the other simulation techniques involve either advanced MCMC simulation techniques or a
suitable root-finding technique (to determine the corrcoef function of the underlying Gaussian process, if it exists)
and numerical computation of the inverse mappings of the target marPDFs (for Nataf transformation) for generation
of each and every realization of the stochastic process. Thus, these other techniques require substantial amounts of sim-
ulation time for generation of thousands of realizations (typically at the scale of hours). This essentially implies that the
higher the number of PC realizations, the more computational savings achieved by employing the PC based simulation
techniques (even after including the initial set-up time required for estimating the PC coefficients as highlighted in
Remark 2).

In the next section, modeling of Y via Approach 2 is considered.

4.5. Modeling of Y via Approach 2

The experimental samples, fYkgn
k¼1, of Y as obtained in Section 4.3 are used here again to deduce PC representation of Y

by employing Approach 2. In this case, application of KL decomposition in order to obtain a reduced order representation of
Y is not plausible since statistical dependency here would be characterized by SRCC not by PCC. However, for the sake of
improved efficiency and regularity of the following numerical task, the samples of Y is scaled to obtain a set of samples
of another N-dimensional random vector Z ¼ ½z1; . . . ; zN�T supported on ½�1;1�N by employing a transformation similar to
(26). In this case, Y is related to Z by,
Y ¼ aþ ðb� aÞ � 1
2
ðZ þ 1NÞ

� �
; ð31Þ
and the experimental samples, fZkgn
k¼1, of Z follow from,
Zk ¼ 2 ðYk � aÞ � 1
b� a

� �� �
� 1N; k ¼ 1; . . . ; n: ð32Þ
In (31) and (32), a and b are now, respectively, given by a ¼ ½a1; . . . ;aN�T and b ¼ ½b1; . . . ; bN�
T with ai and bi, respectively, esti-

mated as minðyð1Þi ; . . . ; yðnÞi Þ and maxðyð1Þi ; . . . ; yðnÞi Þ. Here, yðkÞi is the ith component, i ¼ 1; . . . ;N, of the kth sample,
Yk ¼ ½yðkÞ1 ; . . . ; yðkÞN �.

The normalized marginal histogram of each random variable component, zi; i 2 I ¼ f1;2; . . . ;121g (recall N ¼ 121), is
constructed based on corresponding n ¼ 216 experimental samples appropriately collected from fZkgn

k¼1. Marginal histo-
gram is based on 12 equal-sized bins on the support, szi

� ½�1;1�, of zi. Similar to previous approach, subsequent use of
1-dimensional linear interpolation scheme on this normalized histogram results in an estimate of the target marPDF of zi.

Based on the target marPDF Pzi
, PC representation of each zi (see (18)) is determined. In constructing these PC represen-

tations, orthogonal polynomials are again chosen as Legendre polynomials, given by (29), in terms of a set of uniform random
variables, fnig

121
i¼1 , each of which is supported on ½�1;1�. In computing the corresponding PC coefficients, the approximate

function, ~qi, to be used in lieu of qi � P�1
zi

Pni
in (19) is based on dividing szi

into 199 equal intervals (see Appendix). The result-
ing PC representation, zi¼

d limKi!1
PKi

j¼0cjiWjðniÞ, is truncated at Ki ¼ 14;8i 2 I .
In order to digitally generate realizations of Z (and Y), a set of nPC = 50,000 samples of random vector, n ¼ ½n1; . . . ; n121�

T , is
simulated first as follows. Unlike Approach 1, the random variables, n1; . . . ; n121, here are statistically dependent. The statis-
tical dependency of n is characterized by the SRCC matrix estimated based on experimental samples, fZkg216

k¼1, of Z. Applica-
tion of the mapping defined by (20) on the resulting sample SRCC matrix of Z, however, yields an estimate of ½qð1Þ� which
turns out to be a non-positive-definite matrix, thus rendering the normal copula technique inapplicable. Samples of the asso-
ciated Gaussian random vector, X, consisting of correlated standard normal random variables, x1; . . . ;x121, therefore, need to
be generated by using the augmented normal copula technique as highlighted in Section 3.2.3. The constrained optimization
problem defined by (23) is solved to determine an estimate of the feasible positive-definite covariance (or correlation) ma-
trix ½q� of X. It is found that relMSEð½q̂�; ½q̂ð1Þ�Þ ¼ 0:0006% and relMSEð½q̂s�; ½q̂ð1Þs �Þ ¼ 0:0006%, in which ½q̂ð1Þs � is the sample (po-
sitive-definite) SRCC matrix based on fZkg216

k¼1 and ½q̂s� is (again) a positive-definite matrix resulting from the element-wise
application of the inverse mapping of (20) on ½q̂�, i.e., ðq̂sÞij ¼ ð6=pÞ arcsinðq̂ij=2Þ. The hat symbols are used to indicate that the
quantities are estimated based on n ¼ 216 samples. Then, 50,000 samples of n consisting of statistically dependent uniform
random variables, fnig

121
i¼1 , supported on ½�1;1�121, with an estimate of its SRCC or PCC matrix being given by ½q̂s�, can be read-

ily generated by using the augmented normal copula technique. Use of these samples in the constructed PC representations
for fzigi2I yields a set, fZðPCÞ

k gnPC
k¼1, of 50,000 samples of Z, and subsequently, the set, fYðPCÞ

k gnPC
k¼1, of samples of Y follows from

(31).
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Let the estimate of marpdf of zi; i 2 I , be denoted by p̂ðPCÞ
zi

that is again determined from the corresponding marginal nor-
malized linearly interpolated histogram. The histogram is based on 25 equal-sized bins on the corresponding support, szi

. A
comparison between two marpdfs based on 50,000 PC realizations and 216 experimental samples is shown in Fig. 16 for zi

corresponding to maxi2I ½relMSEpðp̂ðPCÞ
zi

; p̂zi
Þ� ¼ 2:1833%, in which relMSEpðp̂ðPCÞ

zi
; p̂zi
Þ is now defined by,
Table 5
Compar

Rela

Mea

2.55

Table 4
Compar
as expla

Rela

Mea

0.03
relMSEpðp̂ðPCÞ
zi

; p̂zi
Þ ¼ 100

R
szi

p̂ðPCÞ
zi
ðziÞ � p̂zi

ðziÞ
n o2

dziR
szi

p̂2
zi
ðziÞdzi

;

with p̂zi
being an estimate of the marpdf based on 216 experimental samples of zi. Let us also report the minimum value of

relMSEp;mini2I ½relMSEpðp̂ðPCÞ
zi

; p̂zi
Þ� ¼ 0:0729%.

Finally, summaries of practically significant statistics based on PC realizations are compared with that based on experi-
mental samples for Z and Y, respectively, in Tables 4 and 5. It must remarked here that the covariance matrix is not used as a
measure of statistical dependency in Approach 2, the corresponding results are still shown in the second columns of these
tables for the sake of completeness.

Remark 4. We remark here that the computational efforts required for estimating the PC coefficients via Approach 2 is less
than 1/18 of that of the first approach (i.e., less than 4 h) since it involves only a set of marginal pdfs and SRCC unlike
Approach 1 that involves a set of bivariate pdfs. The computation is carried out in the same single processor machine as
indicated earlier in Remark 2. This computational cost also includes the cost required to solve the constrained optimization
problem defined by (23). It requires less than 3 h to carry out this augmented normal copula technique associated with the
resulting 121� 121 SRCC matrix. In Approach 2, most of the computational time may likely be devoted in determining an
estimate ½q̂� of the feasible positive-definite covariance (or correlation) matrix of the standard Gaussian random vector X
from the associated sample SRCC matrix. Simulation time for generating samples of Y from the constructed PC
representation is, however, comparable with that of Approach 1.
Fig. 16. Estimates of marginal pdf of zi corresponding to maxi2I ½relMSEpðp̂ðPCÞ
zi

; p̂zi
Þ� ¼ 2:1833%.

ison of statistics between experimental samples and PC samples of Y; relative MSE is similarly computed as explained in the caption of Table 2.

tive MSE in percentage (%) for

n vector Covariance matrix SRCC matrix

69 1.3123 0.0040

ison of statistics between experimental samples and PC samples of the N-dimensional normalized random vector Z; relative MSE is similarly computed
ined in the caption of Table 2.

tive MSE in percentage (%) for

n vector Covariance matrix SRCC matrix

39 5.4139 0.0040



S. Das et al. / Journal of Computational Physics 228 (2009) 8726–8751 8747
4.6. Reconstructing the original random temperature field

Construct the PC representation of Z either by using Approach 1 or Approach 2 as appropriate. The PC coefficients of the
random variable components of Z and those of Y are related by linear mappings as can be readily verified by using (27) and
(31) (see also the authors’ other works [30] for further details). Since the set of 11� 11 random variables, fCðnÞðt;hÞgðt;hÞ2ðT�DÞ,
constitute Y, PC coefficients of Cðt; hÞ; ðt;hÞ 2 ðT � DÞ, immediately follow from the PC coefficients of Y by using the relation,
Cðt;hÞ ¼ Cðt;hÞCðnÞðt;hÞ þ Cðt;hÞ. Inference of PC coefficients of the original random process, when ðt;hÞ R ðT � DÞ, from those
of Cðt; hÞ; ðt;hÞ 2 ðT � DÞ, is essentially a task of interpolation or/and approximation technique as shown in numerous other
occasions in the present work. Digital generation of realizations of the original random process similarly needs no further
explanation.

5. Conclusion

Two approaches for constructing PC representations from experimental measurements are presented. These representa-
tions yield, in general, non-Gaussian models for a second-order random vector Y, that has been experimentally observed.
The random vector Y can be viewed as a finite-dimensional representation of a non-stationary, non-Gaussian, second-order
random field evolving over space or space–time. The experimental data is measured on a finite countable subset of the
indexing set. In many practical applications, e.g., prediction of acoustic field statistics involving oceanographic parameters
as indicated in the previous section, use of a spatio-temporal random field to describe variability in model parameters, yields
a more appropriate representation of reality. The PC representation of the random field representing such random system
parameters has been proven to be an efficient tool in systematically propagating the uncertainty to the model-based re-
sponse predictions of the stochastic system.

Approach 1 attempts to capture the complete information of a target mjpdf of Y. This approach uses the knowledge of a
complete set of properly ordered target conditional PDFs estimated from the experimental measurements and the Rosenblatt
transformation. The set of target conditional pdfs, that uniquely defines the target mjpdf of Y, are approximations, based on
linear interpolation, of the corresponding set of normalized histograms of the appropriate set of experimental samples. Ap-
proach 2, on the other hand, satisfies the target marPDFs and the target SRCC matrix of Y. The set of target marPDFs and the
target SRCC matrix are similarly estimated by using the experimental samples. The second approach is also founded on the
Rosenblatt transformation. In both approaches, appropriate functions based on the Rosenblatt transformation are first de-
fined in terms of the selected PC variables, nk’s. The defined functions are equal to Y in the sense of distribution. Subse-
quently, construction of the PC expansion of these functions results in appropriate PC representations that can be readily
employed within the PC framework to propagate the associated uncertainty. It should, however, be realized that the exis-
tence and uniqueness of these functions can rarely be established in practice due to ignorance of the true sources of uncer-
tainty, let alone the manner in which they map into the system-level parameters. Nevertheless, the proposed approaches
guarantee [10, Theorem 2.1] that such functions can always be constructed, using distributional equivalence. For efficient
and fast computation of the PC coefficients, the Rosenblatt transformation based functions are further substituted by the
appropriate interpolated functions.

One important distinction between the two proposed approaches is that while PC random variables, nk’s, are statistically
independent in Approach 1, the corresponding set of PC random variables are statistically dependent in Approach 2. More-
over, Approach 1 will typically be more computationally demanding than Approach 2. Additional model reduction tech-
niques, e.g., use of KL decomposition as discussed in the context of numerical illustration in Section 4.4.1, are
recommended in order to manage this computational effort. Further probabilistic assumptions as made in Section 4.4.2,
while modeling the spatio-temporal random temperature field, would also alleviate the computational burden albeit at
the expense of accuracy. This practice is certainly recommended if the achieved accuracy is within acceptable bounds.
The accuracy level of Approach 2 is expected to be higher than that of Approach 1 if additional probabilistic assumptions
and model reduction schemes, as just indicated, are incorporated into it.
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Appendix A. Computation of PC coefficients

This appendix describes an 1-dimensional interpolation based scheme that would be useful for efficient computation of

1. fajðy2Þgj2N in (10), or
2. fcjgj2N in (15), or
3. fcjkgj2N for any given k 2 f1; . . . ;Ng in (18).
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Since all the cases above are similar, only the last case involving fcjkgj2N; k 2 f1; . . . ;Ng, will be considered. Any other case
can be readily tackled by replacing cjk; Pyk

and Pnk
with the appropriate PC coefficients and PDFs.

Let the pdf and support of yk be denoted, respectively, by pyk
and sk ¼ ½lk;mk� � R. The computation of cjk in (19) based on

qk � P�1
yk

Pnk
involves solving an integral equation. For some given nk, the integral equation, Pnk

ðnkÞ ¼
R yk

lk
pyk
ðyÞdy, is to be

solved for yk. Solving this integral equation several times within the numerical integration algorithm, that is employed to
compute cjk, significantly increases the computational burden, and might also lead to certain numerical instability. To over-
come these difficulties and to increase the computational expediency and efficiency, a surrogate function, ~qk, determined
based on 1-dimensional interpolation technique, is used for qk in (19) to compute the PC coefficients, cjk. The approximate
function, ~qk, needs to be determined only once 8j 2 N.

Consider uk � Pnk
ðnkÞ¼

d Pyk
ðykÞ (uk here should not be confused with the components of U in sub Sections 3.2.2 and 3.2.3).

For a given yk 2 syk
¼ ½lk;mk�, finding uk from uk ¼ Pyk

ðykÞ is, in general, much cheaper than finding yk from yk ¼ P�1
yk
ðukÞ for a

given uk 2 ½0;1�.
For each k 2 f1; . . . ;Ng, let the support, sk, be divided equally into nk 2 N intervals. Then, coordinates of the points defin-

ing these intervals are given by yðjÞk ¼ lk þ j½ðmk � lkÞ=nk�; j ¼ 0; . . . ;nk. For each of these points, first compute uðjÞk ¼ Pyk
ðyðjÞk Þ,

and then compute nðjÞk ¼ P�1
nk
ðuðjÞk Þ. Since Pnk

’s are suitably chosen standard measures associated with the commonly used
PC random variables, computation of P�1

nk
via closed form expression or efficient algorithms is available in the statistical lit-

erature (see e.g., [40, Section 3.2]; [10, Section 2.1]). As already indicated, the statistical toolbox of MATLAB provides func-
tions to evaluate the inverse of PDF for many such standard PC random variables. Since Pyk

and Pnk
are monotonically

increasing function, the set of values in fnðjÞk g
nk
j¼0 would be in the increasing order, nð0Þk < � � � < nðnkÞ

k . The set, fnðjÞk ; y
ðjÞ
k g

nk
j¼0, thus

determined is now used to construct the approximate function, snk
3 nk#~qkðnkÞ 2 syk

, by using standard interpolation tech-
nique [49]. The basic MATLAB package offers a function, interp1, use of which should be sufficient enough for deduction of
~qk for many practical purposes. The approximate function, ~qk, is used as a proxy for qk in (19) to compute the PC coefficients,
cjk’s.

The error in approximating qkðnkÞ by the PC representation ~qðKkÞ
k ðnkÞ ¼

PKk
j¼0cjkWjðnkÞ, for some large Kk 2 N, is bounded

above by the following relation,
jqkðnkÞ � ~qðKkÞ
k ðnkÞj 6 jqkðnkÞ � ~qkðnkÞj þ j~qkðnkÞ � ~qðKkÞ

k ðnkÞj a:s: ðA:1Þ
The second error term is bounded above by some eKk
ðnkÞ satisfying limKk!1 eKk

ðnkÞ ¼ 0 [36, Chapter 4] a.s. When a linear
interpolation scheme is employed, the interpolated function, ~qk, is piecewise linear in nk and the first error term is then
bounded above by Oðh2

kÞ, in which hk ¼max16i6nk
ðnðiÞk � nði�1Þ

k Þ, [49, Example 1.1.4] a.s. In establishing this error bound,
Oðh2

kÞ, it is necessary for the second derivative of qk to be piecewise bounded by some finite K, i.e., j@2qkðnkÞ=@nkj 6 K on
snk

except possibly a finite number of points. As it is already mentioned that an assumption of piecewise smoothness is re-
quired to arrive at the PC representation in a.s. sense, the piecewise linear function, ~qk, that is actually being represented by
PC formalism, automatically satisfies the assumption of piecewise smoothness. Therefore, in order to bound both the error
bounds in a.s. sense, the assumption of piecewise smoothness of the original function, qk, needs to be replaced by a relatively
stronger assumption of the piecewise boundedness of the second derivative of the function qk.
Appendix B. Convergence, verification and validation analysis

The two approaches described in this paper can each be broken down into the following two essential steps. In the first
step, a target mjPDF is constructed that purports to describe available information. The second step involves developing a PC
representation of a set of random variables characterized by a known mjPDF. The PC representation is constructed such that
the associated mjPDF is within specified tolerance to the known mjPDF of the random variables being described via PC rep-
resentation. An analysis of the second step provides the verification task associated with our approaches. When the known
mjPDF is taken as the target mjPDF constructed in the first step, then the suitability of the developed PC representation can
be construed to define a ‘‘model validation” task associated with our approaches.

We will first consider the verification analysis along with the associated convergence issues followed by the validation
process.
B.1. Convergence issues and verification analysis

Denote the PC based estimate of PY by PðM;nk ;K;nPCÞ
f . The subscript f is used to indicate that the Rosenblatt transformation is

employed in defining the unknown mapping f : n! Y in the process of determining PðM;nk ;K;nPCÞ
f . Several superscripts are used

to show the dependence on them. Let us recall here that nk refers to the number of slices as required in Section 3.1 (see, e.g.,
Fig. 4), and K refers to the number of terms retained in the constructed PC representation. It should be noted that K, in gen-
eral, could be different along different random variable components of Y or its KL approximation as appropriate. While K is
considered to be identical for all the components for the sake of simplified notation, the ensuing discussion can be readily
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adapted to include the situation of different K’s. We remind the readers that the superscript, (PC), as used in Sections 4.4.2
and 4.5 is a simplistic notation of the dependence as alluded to above.

The MSE of PðM;nk ;K;nPCÞ
f , which measures the goodness of PðM;nk ;K;nPCÞ

f locally at Y 2 SY , can be given by
jPYðYÞ � PðM;nk ;K;nPCÞ

f ðYÞj2. For the verification purpose, the behavior of this MSE, as M, nk;K and nPC change, can be used to
determine if the applications of the proposed approaches accurately yield consistent PC representations. The MSE is bounded
by the following five error terms,
Table 6
Compar
explain

Rela

Mea

6.41
jPYðYÞ � PðM;nk ;K;nPCÞ
f ðYÞj2 6 jPYðYÞ � PðMÞY ðYÞj

2 þ jPðMÞY ðYÞ � PðMÞf ðYÞj
2 þ jPðMÞf ðYÞ � PðM;nkÞ

f ðYÞj2 þ jPðM;nkÞ
f ðYÞ

� PðM;nk ;KÞ
f ðYÞj2 þ jPðM;nk ;KÞ

f ðYÞ � PðM;nk ;K;nPCÞ
f ðYÞj2; ðB:1Þ
in which several superscripts represent the appropriate dependence.
The first error term in (B.1) is only relevant for Approach 1 since the KL approximation is only employed in Approach 1 to

obtain a reduced order representation of Y. For Approach 2, PðMÞY ðYÞ � PYðYÞ since the KL representation is not required, and,
therefore, this error term is identically zero. For Approach 1, by the mean-square convergence criterion of the KL approxi-
mation as discussed in Section 4.4.1 and Cramér–Wold theorem [27, pp. 383], it can be concluded that
limM!NPðMÞY ðYÞ :¼ limM!NPYðMÞ ðYÞ ¼ PYðYÞ. Thus, the first error term can be made negligibly small by choosing an appropriate
large value of M, which depends on the scales of stochastic fluctuations across the components of Y.

Use of the Rosenblatt transformation guarantees that fðnÞ is equal in distribution to Y. Equality in distribution, in turn,
implies that the second error term in (B.1) is identically zero for Approach 1. Use of this equality in distribution along with
the invariance under monotone transformation property of the SRCC, the second error term also turns out to be identically
zero for Approach 2 since it is assumed that PY is completely characterized by the marPDFs and the SRCC matrix of Y. To
investigate this effect more rigorously, it should be noted that since PðMÞY ðYÞ � PYðYÞ is valid for Approach 2, the second error
term is bounded above by jPYðYÞ � ePYðYÞj2 þ jePYðYÞ � PfðYÞj2, where ePY is characterized by the marPDFs and SRCC matrix of
Y but otherwise least committal to unavailable information. The assumption made in Approach 2 essentially implies thatePYðYÞ � PYðYÞ. Use of any numerical techniques in determining the correlation matrix of the Gaussian random vector X
as required in Approach 2 is likely to introduce a small, but often practically acceptable, error given by jePYðYÞ � PfðYÞj2. Fi-
nally, we note for Approach 1 that if any assumptions are made in the numerical procedure for constructing the PC repre-
sentations, e.g., as introduced by the assumption of pairwise statistical independence in Section 4.4.2, then it implies that the
second error term is bounded above by jPðMÞY ðYÞ � eP ðMÞY ðYÞj

2 þ jeP ðMÞY ðYÞ � PðMÞf ðYÞj
2. Here, the associated mjpdf ofeP ðMÞY :¼ ePYðMÞ � PZ , e.g., in the context of the discussion in Section 4.4.2, is now explicitly given by the rhs of (28).

Let us consider the third error term now. It is only relevant for Approach 1. At any arbitrary point Y 2 SY through which
no slice passes, PðM;nkÞ

f can be simply defined by employing any standard interpolation scheme. It is straightforward to see
that the third error term jPðMÞf ðYÞ � PðM;nkÞ

f ðYÞj2 can be made negligibly small by choosing a large number nk of slices [49].
Since the concept of slice is irrelevant for Approach 2 and PY is assumed to be completely characterized by the marPDFs
and the SRCC matrix of Y, this error term becomes identically zero for Approach 2 implying that PðM;nkÞ

f ðYÞ � PðMÞf ðYÞ.
Before investigating the fourth error term, let us recall that the set of target conditional PDFs, fPijðiþ1Þ:NgN

i¼1, as required for
Approach 1, uniquely defines PY � Pf . Use of this condition along with the mean-square convergence criterion of the PC rep-
resentation of fijðiþ1Þ:N � P�1

ijðiþ1Þ:NPni
and the validity of the orthogonal series expansion of the interpolated function of each PC

coefficient (associated with the PC representation of fijðiþ1Þ:N) at every continuity point of this interpolated function guaran-
tees that limK!1PðM;nk ;KÞ

f ðYÞ ¼ PðM;nkÞ
f ðYÞ for Approach 1. For Approach 2, the mean-square convergence criterion of the PC rep-

resentation of qi � P�1
yi

Pni
along with the invariance under monotone transformation property of the SRCC is relevant to

conclude that limK!1PðM;KÞ
f ðYÞ ¼ PðMÞf ðYÞ. The accuracy of the resulting PC representations and orthogonal series expansions

can be estimated by using the existing results on convergence analysis in the literature [19]. As already explained in Section
3, the above mean-square convergence can also be interpreted in a.s. sense for both approaches. Clearly, choosing a large
value of K guarantees that the fourth error term is negligibly small for both approaches.

Finally, it is well known that the last error term in (B.1) can also be made negligibly small by choosing a large PC sample
size nPC [6,40,10].

Tables 6 and 7 show results similar to those in Tables 2 and 3 with nk ¼ 25 slices and K ¼ 14 instead of nk ¼ 200 slices and
K ¼ 19, respectively. These results indicate, as expected, a decrease in relative MSE for various statistics with increase in nk

and K.
For Approach 2, while higher level of errors are observed for several statistics computed with lower values of K, say,

K ¼ 12, and other different parameters, these errors are not appreciably different from those shown in Tables 4 and 5.
ison of statistics between experimental samples and PC samples of the normalized KL random vector Z; relative MSE is similarly computed as
ed in the caption of Table 2; maxl2L;u2U ½relMSEpðp̂ðPCÞ

zl zu ; p̂zl zu Þ� ¼ 24:9520% and minl2L;u2U ½relMSEpðp̂ðPCÞ
zl zu ; p̂zl zu Þ� ¼ 2:6312%.

tive MSE in percentage (%) for

n vector Covariance matrix SRCC matrix

40 1.9194 6.7806



Table 7
Comparison of statistics between experimental samples and PC samples of Y; relative MSE is similarly computed as explained in the caption of Table 2.

Relative MSE in percentage (%) for

Mean vector Covariance matrix SRCC matrix

>25 1.5434 6.7728
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The convergence analysis as explained above provides a practically appealing and essential verification tool guaranteeing
that the implementation of the proposed approaches results in PC representations consistent with the conceptual descrip-
tion of the target mjPDF PY . By the use of Kolmogorov’s existence theorem [27, Section 36], it can be concluded then that the
constructed second-order, non-stationary and non-Gaussian stochastic process characterized by PY and the underlying ori-
ginal stochastic process are equivalent in the sense that they have identical N-dimensional mjPDF.
B.2. Validation formalities

For Approach 1, several statistics as shown in Tables 1–3 and the maximum and minimum values of relMSEpð�; �Þ as indi-
cated in Section 4.4.2 are taken as the statistical features of interest. For Approach 2, similar statistical features are indicated
in Tables 4, 5 and through a few other metrics as defined by relMSEð½q�; ½qð1Þ�Þ and relMSEð½qs�; ½q

ð1Þ
s �Þ along with the maxi-

mum and minimum values of relMSEpð�; �Þ as discussed in Section 4.5.
The results presented in Section 4.4 for Approach 1 and in Section 4.5 for Approach 2 validate the respective PC represen-

tation. This validation must be judged within the degree of accuracy measured w.r.t. the relative MSE as reported for the
corresponding statistical features of interest. Also, the importance of this validation must solely be interpreted from the per-
spective of the objective of our work, i.e., constructing the PC representation directly from the available experimental mea-
surements by capturing the statistical information of interest as intended.

As more data become available modifying the dimension of Y (i.e., N) and the experimental sample size (i.e., n), the de-
gree of accuracy will change, which will call for the steps to re-validate the constructed PC representation. The relative MSE
of several statistics should be recomputed to check if they are within the desired degree of accuracy. If they are within the
desired degree of accuracy, then there will be no need to reconstruct the PC representation. Otherwise, new PC representa-
tion must be constructed to obtain a validated probability model.
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